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lumination, so that the resolution in the image is worse 
than that expected for the aperture size used. These 
binary oxides of tungsten and niobium, having some 
quite intense diffraction spots near the periphery of 
the objective aperture, are rather sensitive to the effect. 
However, such beams will always be the ones con- 
tributing the finer detail in images and, therefore, the 
effect will always limit resolution to values more than 
those expected for the size of objective aperture. 

The computations show how a decrease in divergence 
restores the lost detail. We believe that this effect is 
general, and that the obvious step to improved resolu- 
tion, apart from reducing the value of Cs, is to improve 
the illuminating system of the microscope to give less 
divergence without loss of intensity. Fig. 5 shows that 
to obtain the resolution appropriate to the size of the 
objective aperture, the divergence should be at most 
half that used in our experiment, corresponding to the 
image in Fig. 5(b); much detail is still lost in Fig. 5(c), 
where the divergence is reduced by {. 

We wish to thank Dr S. Iijima for providing the 
electron diffraction pattern and micrograph used in 

Figs. 1 and 6, and for permission to publish these. 
Thanks are also due to the members of the Electron 
Diffraction Section of the CSIRO Division of Chem- 
ical Physics, in particular to Dr D. F. Lynch and Mr 
A. F. Moodie for their theoretical assistance. 
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Probability Distribution Connected with Structure Amplitudes of Two Related Crystals. 
VII. The Case of an Approximately Centrosymmetric Structure* 
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The probability distribution of the structure factors F~ and F~, where the former refers to the 'true 
structure' containing N atoms at locations rNj and the latter to the assumed model' with N atoms at 
locations r~,j, is worked out for the situation where the assumed model is exactly centrosymmetric and 
the true model is approximately centrosymmetric. Other statistical distributions connected with these, 
such as difference, quotient, reciprocal quotient and the phase-angle difference have also been derived. 
Also a Booth type of discrepancy index is worked out for such a situation. Theoretical results are verified 
with a hypothetical model. 

Introduction 

In the ealier parts of the series (Part I: Ramachandran, 
Srinivasan & Raghupathy Sarma, 1963; Part II: Srini- 
vasari, Raghupathy Sarma & Ramachandran, 1963a; 
Part III: Srinivasan, Subramanian & Ramachandran, 
1964; Part IV: Srinivasan & Ramachandran, 1965a; 
Part V: Srinivasan & Ramachandran, 1965b; Part VI: 
Srinivasan & Ramachandran, 1966; see also, Srini- 
vasan, Raghupathy Sarma & Ramachandran, 1963b; 

* Contribution No. 390 from the Centre of Advanced Study 
in Physics, University of Madras, Guindy Campus, Madras- 
600025, India. 

t To whom correspondence should be addressed. 

Srinivasan & Chandrasekaran, 1966 - hereafter re- 
ferred to as SC; Parthasarathy & Srinivasan, 1967 - 
hereafter referred to as PS) the probability distributions 
of a pair of structure factors were considered. The 
results led to various statistical tests such as tests for 
isomorphism between a pair of crystals, and discrepan- 
cy indices for use in crystal structure analysis. The 
basic problem considered may be stated as the prob- 
ability distribution of the structure factor of the 
' true' structure containing N atoms at locations r m 
and another 'assumed model' containing a part P of 
the atoms (P_< N) with coordinate errors. The prob- 
ability distribution function of the structure factors 
FN and F~,, where FN corresponds to the true structure 
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and F~, to the 'assumed model', was established and 
several statistical results were deduced. Two main cases 
were considered, namely 

(a) case I: when both F~¢ and F~, are non-centrosym- 
metric; 

(b) case II: when both FN and F~, are centrosymmetric. 

The cases (III and IV) when one of the two is non- 
centrosymmetric and the other centrosymmetric were 
not considered since no immediate practical application 
was then envisaged. However, it has been realised that 
a situation of this type could arise in practice and 
could lead to distributions corresponding to pseudo- 
symmetric structures. For instance, it is possible that 
the true structure is 'approximately centrosymmetric' 
whereas the assumed model is exactly centrosymmetric 
(case III). The coordinates r~cj of the true model would 
then be related to the coordinates r~j of the assumed 
model by the shifts Arnj which would correspond to 
the perturbation of the centrosymmetric model to 
yield the non-centrosymmetric one.* This problem has 
been considered and reported briefly (Srinivasan & 
Swaminathan, 1975). 

The present paper deals with working out in detail 
the joint probability distribution of the structure fac- 
tors FN and F~, for such a situation. This enables us to 
work out several other statistical distributions such as 
the difference, quotient, reciprocal quotient and phase 
angle connected with the structure factors FN and F$. 
Also it is obvious that the converse case of FN corres- 
ponding to a centrosymmetric model and F~v to a 
non-centrosymmetric one, can be deduced from the 
results of case III. 

This type of pseudosymmetric distribution was first 
considered by Luzzati (1953) who applied his (1952) 
earlier analysis to the above situation. He deduced the 
values of a type of discrepancy index involving FN and 
F~v which would enable one to estimate ([ArNj[) in a 
practical situation. Here we treat this problem more 
systematically following the type of analysis used for 
cases I and II. In particular, the distributions for the 
difference, quotient, and reciprocal quotient of the nor- 
malized structure factors as well as their phase-angle 
difference will be arrived at. Since most of the steps for 
the derivation are common to the earlier parts ref- 
erence to equations etc., of the earlier parts will be 
made by a prefix denoting the part concerned. 

The treatment of the present problem of the degree 
of centrosymmetry of a non-centrosymmetric structure 
arose in another context (Srinivasan & Vijayalakshmi, 
1972; Srinivasan, Swaminathan & Chacko, 1972; Sri- 
nivasan, Vijayalakshmi & Parthasarathy, 1974). 

Basic probability distributions 

Let rNj denote the coordinates of the structure which is 
approximately centrosymmetric. This may be considered 

* For convenience we consider only the case when P = N. 

to have been derived by giving random and independent 
displacements ArNj to the coordinates of a perfectly 
centrosymmetric assumed model with coordinates rN~. 
It is assumed that the shifts ArNj and ArNj, for the atoms 
j and j '  which are related by a centre of symmetry are 
random and independent where n =N/2. Let FN and 
F~ denote the structure factors of the true and as- 
sumed models, which are considered to consist of a 
large number of similar atoms. The conditional joint 
distribution function of IFNI and ~ for a given F~ 
can be deduced from equation (A7) of SC by setting 
P=N,  ao=O 

IF~I 
e(IF~l,~; F%)= ~cr~(l_D2) 

x exp [-IF~vI2+DZlFfvIZ-2DIFNIff~(I - -  0 2) IFfv[ cos ~] (1) 

where 
D =  (cos 2uH.  ArNj) (la) 

and a is the angle between FN and F~. The validity of 
equation (A7) of SC in the present situation is obvious 
since the former is deduced from the distribution of 
AF arising out of ArNj for a structure factor with a 
given F~v. In terms of the normalized variables, yu = 
IFNI/Ol~ and y$=lF}l/aN, (1) takes the form 

P(Ym ~; Y~) = YN 
7~(1 - D  z ) 

2 2 c2 ¢ ] Y~v + D YN - 2DyNyN COS 
x e x p -  ( l_D2)  . (2) 

The conditional distribution of amplitude y~¢ alone is 
obtained by integrating (2) with respect to ct which 
yields [equation (A9) of SC, in the normalized form] 

P(YN; Y~)-- 
yN 

( 1 - D  z) 

× exp [ -  yZ + D2ygt2 2DyNy$ 
( 1 - D  2 ] 1° ( ( l - D 2 ) )  " (3) 

Equation (3) is identical in form with equation (V-9). 
It is important to note here that for the present case 
FN has both phase and magnitude while F~ is real 
since it corresponds to a centrosymmetric model. Thus, 
although the conditional distribution P(YN; Y~¢) for the 
present case and case I turns out to be the same, the 
distinction arises only at the next stage, namely in 
trying to arrive at the joint distribution P(yN, y$) 
which needs assumptions about the distribution P(y~). 
Thus with a centric distribution assumed for P(y~¢), 

1/ exp 
2 I '  

(4) 
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the joint distribution P(YN,Y$) is deduced to be 

P(YN,Y~)=P(YN; Y~)P(Y~) = ( I _ D  2) 

x exp[-  2Y~c;(1-~-DDz))Yff.] Io [ 2DyNy~ 1 ( 5) (1 - D 2) a " 

The distribution of YN alone can be deduced by inte- 
grating (5) with respect to y~r with the use of the table 
of integrals (Gradshteyn & Ryzhik, 1965, p. 710, § 
6.618). We get 

2yN [ y~ '~ [ D2y~ 
P(YN) = V~-~-_~ - exp t~ I _ D  4 ]Io k-(Z~-¢]. (6) 

Probability distribution of the phase angle 

Analogously the conditional distribution P(0c; y~v) can 
be arrived at from (2) by integrating over YN. This 
turns out to be 

i 
o o  

P(~x; y~,)= P(yN, cz; y~,)dyN (7) 
0 

= I °° YN o re(1 - D 2) 

x exp [_ y~+ D2yff -2DyNy~ c°s °~] dy N 
( 1 - D  E ) 

(8) 
1 I 

- -  YN re(1 - D 2) 0 

× dyN e x p  [ ( 1 - D 2) ] 
(9) 

Equation (9) can be simplified to (Appendix A) 

p(~;yD=K [[ 1-D z Dye, cos oc ~/rc(1-D 2) 
2 + 2 

_ o2  {1 -'-erf c°s  

where 
DZyff 

exp[  l_D2 ] 
K= 

re(1 - D 2) 

On further simplification (10) takes the form 

1 
P(e; y})= ~ -  exp 1 - D 2 "yff 

D y~,cos~ ( D ~ s i n ' e ~  
+ 21/z V ' I -D 2 xexp (l_D2) ] 

(lo) 

1 +ef t  ( D y cos )] (11) 

The distribution of c¢ is then given by 

P(e)= I :  P(c¢; y})P(y})dy}. (12) 

Using (4), (11) and (12), we get 

oo 1 D ' y f  yC, 
P(~)= Io -~- exp ( l _ D 2 )  1//~ exp ( -  @ )  dY~ 

ioo o y~ cos ~, ( o' ) 
+ - -  1 0 21& ~/1-D 2 exp _D2Y~ 2 sin 2 

x [1 +er f (Dy~ cos ~ yC2 
V.-j-Z--D~ ) ] ] / /~  exp (- - -~-)  dye. 

(13) 

Equation (13) can be simplified to (Appendix B) 

P(~)= ¢ 1 - - D 2  -F ]/2 DI /1 -D E COS 0~ 

2~rV 1 + D 2 2z~ (2D 2 sin 2 o~ + 1 - D 2) 

x [ V2Dc°s°~] I+  ~ . (14) 

Probability distribution of the normalized difference 

From previous experience we find that, among several 
variables connected with the normalized quantities YN 
and y~ such as sum, difference, product and quotient, 
it is the difference and the quotient variables which 
lead to interesting applications. Although the distri- 
bution of the difference and quotient variables were 
derived by Srinivasan & Ramachandran (1965a) and 
Srinivasan, Subramaniam & Ramachandran (1964), 
this can be done by a slightly different procedure (PS) 
which also gives the distribution of the sum valiable. 
Thus the joint probability distribution of the variables* 

is given by 

Y~=YN+Y} (15) 

ya= yN - y} (16) 

P(Y~,Ya) = ½[P(YmY~¢)] , 

where ½ is the Jacobian of transformation, 

l / ~  (Ys+Ya) exp[ (Ys--Ya)2 / I + D Z ~ I  
P(Ys'Ya)=½ _ (1 -D2) " 8 \ ~ l ]  

[ (ys +ya) 2 D (~-y2) 1" 
4(1 -D  z ) ] / ° [ 2 "  (1-DZ)]  

X e x p  ( 1 7) 

It can be easily shown that the function P(Ys,Yd) is 
non-zero only in the region 

-oo<ya<ys,  0<y~< oo (18) 

* We follow uniformly the revised notation for these vari- 
ables. Thus s, d, p and q are used as subscripts to denote sum, 
difference, product and quotient respectively. 
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and is zero elsewhere. The distributions of Ya can be 
obtained from (17) and (18) as 

P(Ya) = I,aJ P(Ys,ya)dys. (19) 

Substituting for P(Ys,Ya) we have 

1 P(Ya)=½Vr~ ( I _ D  2) • exp [ -  --~- / 3 +D2 ]] ,~-Z--Dq-/j 

x ll~dl (y~+Ya)exp 3+z~']1 \~-~T/j 

~<exp (-- Y~ ----La ) Io [" D (y2 __y,]) 2 (1-D2)] dy'" (20) 

Equation (20) was evaluated by numerical methods. 

Probability distribution of the quotient 

As in the earlier treatment (PS) the joint distribution 
of the product (yp) and quotient (yq) variables, defined 
a s  

Y,,=YNY~ (21a) 

Y~=Y~v/Y~, (21b) 
is given by 

1 
P(Yp,Y,~)= ~ P(YmY~) , (22) 

where l12y~ is the Jacobian of transformation. 
It can be easily shown that the function P(yp,yq) is 

non-zero in the domain 

0 < yp < oo; 0 _< y~ < oo (23) 

1"2 / I I i i ' 1 

, d -  
l ~ - - - -  O.9911 

I I /k h / X " ) ~ , ~ N  ., / . /  o.~o 
-" 0 .80  t 

0.6 

0.4 

C I I I 
0 0 . 4  0 . 8  I.: ~ 1.6 P.O 2.4 

Fig. 1. P(yN) distribution for an approximately centrosym- 
metric structure for different D values. 

and is zero elsewhere. 
The distribution of y~ is then given by 

P(y~)= P(yp,y,~)dyp. (24) 
0 

Substituting for P(yp,ya), we have 

1 / ~  1 1 S°° l/y-~-exp ( y p y q )  
P(Yq)= "]/f~-q ( 1 - D  2) 0 1 - D  2 

[_ y,, [1 +D2~ 
× exp 

(25) 
From the table of integrals (Gradshteyn & Ryzhik, 

1965, p. 711, § 6.621) (25) becomes 

2 y j 2 ~ +  1 -+-D z V l - D  z 
P(Y~)= [(2y~Z+ 1 + D2) z -  16OZy~] 

[ ( 4 D y q ) 2 ]  
×:1 ¼,-¼;1; 2y~+l+D' " (26) 

Probability distribution of the normalized 
reciprocal quotient 

In cases I and II certain symmetry properties of the 
normalized variables were emphasized. For instance, 
the function P(Ya) was symmetrical about the origin 
(Part IV). This was also reflected in the quotient 
distribution. That is, the distribution of the quotient 
and its reciprocal were the same (Part III). It turns 
out that in the present case such symmetry properties 
are absent. For instance, the distribution of Yd is 
asymmetric (see next section). This is also reflected in 
the quotient variable. Thus it becomes necessary to 
work out the distribution of the reciprocal quotient 
u= 1/y,~=y~/yN. This is readily done by making ap- 
propriate transformations in the expression for P(yq). 

We obtain for the distribution of u 

21/2 + u 2 + D2u 2 V ~ - D 2 
P(u) = [(2 + u z + DZu2) 2-16D2u z] 

4Du ~ 2]. (27) 

The above expression is different from that for P(y~) 
except when D = 1. 

Discussion of the results 

The various probability distributions may all be seen 
to be characterized by a single parameter D defined in 
(la). It may be noted that D = 0  when the errors 
Ar/s are very large and D =  1 when all the errors are 
zero. Physically these two correspond respectively to 
the true structure being completely non-centrosym- 
metric and completely centrosymmetric. For inter- 
mediate values of D the situation may be described as 
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the true model being approximately centrosymmetric. 
In essence therefore D is a measure of the degree of 
centrosymmetry of the true structure. 

Distribution of the normalized amplitude of an approxi- 
mately centrosymmetric structure 

The way the normalized structure amplitude of an 
approximately centrosymmetric structure is distributed 
is readily available in the marginal distribution PfYN) 
deduced in (6). As is to be expected this is characterized 
by the parameter D. It is readily shown that (6) reduces 
to basic acentric and centric distributions respectively 
for D = 0 and D = 1. Fig. 1 gives a family of curves of 
P(yN) for different values of D including the limiting 
cases. 

The distribution P(YN) is identical in form with the 
distribution of the normalized amplitude for another 
type of situation which could also be characterized 
as an approximately centrosymmetric structure. This 
has been considered earlier (Srinivasan, 1965) (see 
also Parthasarathy & Parthasarathi, 1974). The situa- 
tion considered earlier was the distribution of the 
normalized structure amplitude of a structure in a non- 
centrosymmetric space group P1 containing centro- 
symmetric (P) and non-centrosymmetric (Q) groups 
of atoms. If the ratio of the contribution to the mean 
intensity by the centrosymmetric group to that of the 
whole structure is denoted by a~ the distribution for 
such a case turns out to be* 

e(y~)_ 2yn y~ [ a~y~ exp ( o'~) I0 (28) 
- o I  1 - \ -~ - -~  ] " 

The parallel roles of a~ and D are now obvious. 
Thus the two limits D = 0  (or a~=0) and D = I  (or 
a~ = 1) correspond to acentric and centric distributions. 
Intermediate values of D (or al) correspond to dif- 
ferent degrees of centrosymmetry of the structure. 
Physically the two situations are quite different, al- 
though one could describe both as approximately cen- 
trosymmetric structures. We shall refer to the situation 
considered in this paper as that of an approximately 
centrosymmetric structure (distortion type) to distin- 
guish it from the other type referred to earlier. From 
the above it is also obvious that the parameter D may 
conveniently replace a~ in other statistical distributions, 
considered earlier. 

The distribution of the phase-angle difference 
The distribution P(~) available in (14) is exactly 

the same as the one derived earlier for a noncentro- 
symmetric crystal [equation (23) of Parthasarathy, 
(1965)] if D is replaced by al and ( 1 - D  2) by a2.t 

* Although in the reference cited the distribution P(yN) has 
been given in the form of an integral it can be reduced to the 
above from a table of integral transforms (Gradshteyn & 
Ryzhik, 1965). 

t In the reference cited, the distribution is for I~1 since the 
P(~) distribution is symmetrical about the origin P(I~I)= 
2P(~). 

As mentioned in the previous section this is further 
evidence to indicate the parallel roles of D and a~. The 
P(~) distribution is given in the form of curves in Fig. 

I I I 1 I I I I 
i I 

p(a) .. i - 06 

-- - -  - - 0 7  

t 

0 5  
. - -  0.4 

~ - - -  0.3 I .o 

- 1 8 0  - 1 3 5  - 9 0  - 4 5  0 4 5  9 0  135 180 

(Z 
Fig. 2. Theoletical P(~) distribution for different D values. 
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Fig. 3. Theoretical N(I~I) curves for different D values. 
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Fig. 4. P(Ya) curves for different D values. 
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Fig. 5. P(y~) curves for different D values. 
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Fig. 7. Variation of nRl(y) with D. 

2. The limiting values of P(a) are 1/2re (for D = 0 )  and 
~(a) (for D =  1). The cumulative function of [a[ given 

by N(lctl)=21 l'l P(ct)da for different values of D is 
e/0 

shown in Fig. 3. 

Distribution of  the difference 
The distributions of the difference variable Yd for 

different values of D are shown in Fig. 4. Unlike cases 
I and II the P(Yd) distribution for the present case is 
asymmetric. The maxima of P(Yd) occur on the positive 
side of Yd. The asymmetry is maximum for D = 0  and 
it vanishes at D = 1 when the P(Ya) function is a delta 
function at the origin. Physically these features are 
understandable. For example, the maximum asym- 
metry for D = 0  corresponds to the true model being 
completely non-centrosymmetric while the assumed 
model is centrosymmetric. For the general case the 
lack of symmetry may be seen to be a consequence of 
the fact that  yu and y~, correspond to approximately 
noncentrosymmetric and centrosymmetric structures 
respectively. 

The curves in this form are useful in a situation when 
the true structure is approximately centrosymmetric, 
while the trial model is assumed to be centrosymmetric. 
One would then expect that the ya's will not be as 
often negative as positive. The proportion of positive 
and negative values of Ya may be calculated from the 
curves in Fig. 4 by working out the area under the 
curve for Yd > 0 and Ya < 0. These are given in Table 1 
as a function of D. The difference (y~,- YN) will obvious- 
ly be related to the above curves P(ya) by a mirror at 
yd=O. 

Table 1. Ratio of  the area A +(for Ya > O) to A_ (.for 
Yd < O) under the P(Yd) curve 

D A+ A_ A+/A- 
0"0 0"577 0"423 1 "364 
0"2 0"577 0"423 1"364 
0"4 0"577 0"423 1"364 
0"5 0"577 0"423 1 "364 
0"6 0"576 0"424 1"358 
0"7 0"575 0"425 1"352 
0"8 0"572 0"428 1"336 
0"9 0"565 0"435 1"298 
0"95 0"557 0"443 1 "257 
0"99 0"538 0"462 1"164 

Distribution of the quotient 
The quotient distributions P(y~) for different values 

of D are shown in Fig. 5. For the limit D = 1 we obtain 
a delta function at y~= 1 and for D = 0  we obtain a 
distribution similar to the acentric distribution P(y). 
The symmetry property associated with the quotient 
distribution for cases I and II is absent here. Thus for 
cases I and II both P(yq) and P(1/y~) had identical 
forms. However, for the present case the reciprocal 
u(=  1lye) ofyq has a distribution different from that of 
yq. The P(u) curves are given in Fig. 6. Here again for 
D =  1 we get a delta function at u = l  and for D = 0  



we get a distribution somewhat similar to the centric 
distribution P(y). 

and 

Discrepancy index 
Several types of discrepancy index can be deduced 

from the distributions P(Yd), P(Y,) etc. (for a recent 
account see Srinivasan & Parthasarathy, 1975). We 
shall adopt here for convenience the Booth type of 
index in the normalized form defined by 

(YN--Y~) 2 
nRI(y) = ~, y~ 

or equivalently 

~gl(y)= ((YN-Y~v)z) = (y~) . 

This index has the advantage in the present case that 
the denominator is the same whether the model is 
centrosymmetric or non-centrosymmetric or approxi- 
mately centrosymmetric and is equal to unity. The 
various values of BRI(Y) for different D values are 
shown in Fig. 7. 

Test of the theoretical curves 
The theoretical distributions P(y~), P(yq), P(u) and 

P(a) have been tested with the hypothetical model 
shown in Fig. 8. The molecules (1) and (2) form the 
asymmetric unit in the two-dimensional plane group 
P 1. To start with, the molecules (1) and (2) were as- 
sumed to be exactly related by a centre of inversion. 
With one molecule fixed, small shifts were given to 
the atoms of the other to yield an approximately 
centrosymmetric structure. Care was taken to ensure 
that the shifts were randomly distributed. The tests 
were carried out for D=0.9  and 0.6. The results are 
given in Figs. 9-12. The agreement with theory is 
reasonable. 

One of us (P.S.) thanks the Council of Scientific 
and Industrial Research, India, for financial assistance. 

5.o~ 

Dy~ cos 0~ 
(1 - D z) 

where 

(2) 

o ;o.o% o 

Fig. 8. Hypothetical model used for testing the theoretical 
distributions. 
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Fig. 9 P(~) curves for D=0.6 and 0-9. Experimental values 
are marked by crosses and circles. 

APPENDIX A 

Equation (9) can be written as 

D z 

P(~; Y~)= ~(1 - D') 

xl°°  ( y  z 2Dyer ) 
0 exp - 1 - D - - - - ~  + 1--Z-~" YN cos ~ ysdyN 

(A1) 

1 
- 1.5 - 1 ,0  - 0 . 5  

i 
c o  

= K exp ( -  lty~- 2vys)yNdys (A2) 
0 

K =  

D yf 
e x p (  l_DZ- ) 

n(1 - D b  ; = (1 - D b  
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-.O.3 o o 

! 
0 0.5 1.0 1.5 

Fig. 10. P(Ya) curves for D=0.6 and 0.9. Experimental values 
marked by crosses and circles. 
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(A2) is further simplified to 

I + ] 1 exp ( - p y ~ -  2vyN)dyN . p(a;y~r)= K 1 + - ~  o 

(A3) 

From the table of integral transforms [Gradshteyn & 
Ryzhik, 1965, p. 307, 3.322(2)], A3 is simplified to 

- -  v 

2/tl 2/zv ~ exp(v2/p ) (1 +erf- -~)  ] P (~; Y~v) = K [L 

(A4) 
Substituting for/z and v we get (10). 

A P P E N D I X  B 

Equation (13) can be written as 

P(a) =/1 +/2 
where 

1 oo 
I1 = - ~ - l  ° exp(  

(B1) 

D2 V ~  exp yC2 

(B2) 

1/2 ,oo y~v 2 [ 1+D2~1 
- 2r?/2 i0 exp [ - - -~ -  \ ~ ] j d y ~ v .  (B3) 

For convenience put 

2.5 

2.0 

t 1.5 

0.5 

I I I t 

0 
+ 

x 0.9 . 

0.6 

o i 

0.5 1.0 1.5 2.0 2 5 
yq ---~ 

Fig. 11. P(yq) curves for D=0.6 and 0.9. Experimental values 
are marked by circles and crosses. 

2.5 

2.0 

t 1.5 

P(u) D 

x 
1,0 / ~ ~ - ~  O.e 

o ~ ; ¢ o - .  
O X 

I I I I 
0 0.5 1.0 1.5 2.0 2.5 

U ~  

Fig. 12. P(u) curves for D=0.6 and 0"9. Experimental values 
are given by circles and crosses. 

1 _ ( I + D  2) . 
Q2 2(1 - D  2) ' 

B3 can be written as 

1/2 ~ y~2. 
I1-  2r?/2 Io eXp ( - - -~-)  dY~ 

1/2 ~ Y~r 2+ (Y~v] °So ex'( 7 ) a , 0 ,  (B4) 

1/2 1~re V1-  D 2 
- 2~z3/2 . Q. ~ -  - 2rc~/~ + D 2 . (B5) 

1/2 D ioo • y~ cos 12= 2:rt:V ' l - D 2  0 

O2 sin  ) x e x p (  1 - D  2 "Y~'2 exp 

[ ( °  )] x l+er f  I / 1 - D  2 "y~c°sa  dy~ (B6) 

i o o  1/2 D . Y~v cos 
2re V'I-_ D 2 0 

x e x p [  (2D2 sin2 a+  l -D2)  ] 
- 2 ( 1 - - D  2) y~2 

[ ( °  )] x l+er f  i/~_D2 .Y~vCOSC~ dy$. (B7) 

For convenience put 

1 2D z sin 2 0c + 1 - D  z 
Q2 2( 1 - D z) 

F 1/2 D • Y~v cos ~ exp -- 
12= 2n V I _ D  2 o 

y~, cos J dye.  
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This on integration by parts gives 

1/2 D~/1-D2cosa [ ~/2D cos a] (B9) 
12-- 2z~ (2D 2 sin 2 a + 1 - D 2) 1 + 1 V ~ _  ~_ 

e(~) =*~+I2 = 
¢ 1  --  D z 

2rcV'I + D 2 

1/2 D1/1-  D 2 cos~x ( 1/2D cos a ] 
+ 27r (2D 2sin 2 c t + l - D 2 )  - 1+ ~i-__~ q _ / .  
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Etude Exp6rimentale des Susceptibilit6s Diamagn6tiques Mol6culaires. III. St6roides C21 

PAR G. VAN DEN BOSSCHE ET R. SOBRY 

Laboratoire de Cristallographie, Institut de Physique, Universitd de Liege au Sart Tilman, B 4000 Likge, Belgique 

(Recu le 9 septembre 1974, acceptd le 18 novembre 1974) 

Within the framework of the research undertaken in the authors' laboratory, the magnetic anisotropy 
of some corticosteroids C21 has been studied. The diamagnetic molecular tensors are deduced from the 
measured crystal tensors by an original method. The orientation of the principal molecular axes with 
regard to the steroid skeleton is given. 

Introduction 

Si, depuis de nombreuses ann6es d6j~t, des chercheurs 
se penchent sur les propri6t6s diamagn&iques des 
mol6cules, ce sont les compos6s organiques et m~me, 
plus sp6cialement, les aromatiques qui constituent le 
terrain de pr6dilection aussi bien des exp6rimentateurs 
que des th6oriciens. 

Le manque presque total d'informations sur les 
propri6t6s diamagn6tiques de l'importante famille que 
constituent les st6roides, nous a incit6s b, explorer ce 
domaine. Notre but est de tenter d'obtenir des ren- 
seignements sur la conformation des mol6cules des 
st6roides et plus particuli~rement sur celle des mol6- 
cules de corticost6roides C21, compos6s qui exercent 

sur l'organisme deux types tr~s importants d'activit6, 
d'une part, une activit6 min6ralocorticoide et, d'autre 
part, une activit6 glucocorticoMe. Ces renseignements 
pourront se r6v61er d'une grande utilit6 lorsque nous 
serons en mesure d'6tudier les interactions au niveau 
mol6culaire entre les corticost6roYdes et les macro- 
mol6cules r6ceptrices. 

R6sultats 

Dans l'optique d6crite dans l'introduction, nous avons 
entrepris la mesure et l'interpr6tation des propri6t6s 
diamagn6tiques d'un certain nombre de corti- 
cost6roides C2~. En effet, si nous parvenons b. d6ter- 
miner le tenseur attach6 ~ la mol6cule ~. partir du ten- 


